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There are many probabilistic models…

Estimate p(x) with a model

GMMs Trees

HMMs NTFs

PSD SNFs

BMs

MAFs VAEs GANs

LLMs Dffusion EBMs

Probe p(x) to solve tasks

Lossless data (de-)compression:
p(xi | x1, . . . , xi−1)

Neurosymbolic reasoning:
Ex∈p(x)[κ(x)]=

∫
X p(x)κ(x)dx
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There are many probabilistic models…

Estimate p(x) with a model

GMMs Trees

HMMs NTFs

PSD SNFs

BMs

MAFs VAEs GANs

LLMs Dffusion EBMs

Expressive generative models
(often intractable inference)

Probe p(x) to solve tasks

Lossless data (de-)compression:
p(xi | x1, . . . , xi−1)

Neurosymbolic reasoning:
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There are many probabilistic models…

Estimate p(x) with a model

GMMs Trees

HMMs NTFs

PSD SNFs

BMs

MAFs VAEs GANs

LLMs Dffusion EBMs
Models supporting tractability
(often not expressive enough)

Probe p(x) to solve tasks

Lossless data (de-)compression:
p(xi | x1, . . . , xi−1)

Neurosymbolic reasoning:
Ex∈p(x)[κ(x)]=

∫
X p(x)κ(x)dx
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“How to build probabilistic models that
are expressive yet support tractable inference?”
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Circuits: why?
Neural networks whose tractability and
expressiveness can be analyzed theoretically

Complexity of exact inference
is polynomial w.r.t. circuit size,
under structural assumptions

conditionals: p(xi | x1, . . . , xi−1)

expectations: Ex∈p(x)[κ(x)]

…and more!
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is polynomial w.r.t. circuit size,
under structural assumptions

conditionals: p(xi | x1, . . . , xi−1)

expectations: Ex∈p(x)[κ(x)]

…and more!

Choi, Vergari, and Broeck, Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling, 2020

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”, 2021 4



Circuits: why?
Neural networks whose tractability and
expressiveness can be analyzed theoretically

Framework to study expressiveness,
based on circuit complexity theory

conditionals: p(xi | x1, . . . , xi−1)

expectations: Ex∈p(x)[κ(x)]

…and more!

Valiant, “Negation can be exponentially powerful”, 1979

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 4



Circuits: why?
Neural networks whose tractability and
expressiveness can be analyzed theoretically

Framework to study expressiveness,
based on circuit complexity theory

GMMs Trees

HMMs NTFs

PSD SNFs

BMs

…are all circuits! (more later)

Valiant, “Negation can be exponentially powerful”, 1979

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 4



Circuits: what?
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Circuits: how to model distributions?
Monotonic circuits
p(x) = 1

Z c(x), c(x) ≥ 0

where parameters and input functions are positive

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+

Choi, Vergari, and Broeck, Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling, 2020 6
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A limitation of monotonic circuits

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+ • UDISJ

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, 2024 7



· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large monotonic circuits…

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, 2024 8



Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, 2024 9



Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

+

±2

• UDISJ

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, 2024 9



· · ·

· · ·

· · ·

· · · · · ·

· · ·

...( )
2

…instead squared circuits require polynomial size

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, 2024 10



· · ·

· · ·

· · ·

· · · · · ·

· · ·

...( )
2

Squared circuitsmore expressive thanmonotonic ones

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, 2024 10



Outline

1. Can monotonic circuits be more expressive than squared?

+

±2

• ? • UDISJ
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+
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...

( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring polysize monotonic circuits…
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... ( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…but require exponentially large squared circuits
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Theorem 1.

There is a class of non-negative functionsF over d = k(k+1)
variables that can be encoded by a PC in+sd having sizeO(d).
However, the smallest c2 ∈ ±2

R computing any F ∈ F
requires |c| to be at least 2Ω(

√
d).

Squaring alone can reduce expressiveness!

Wang and Van den Broeck, On the Relationship Between Monotone and Squared Probabilistic Circuits, 2024 12



Outline

1. Can monotonic circuits be more expressive than squared?
=⇒ Yes!

2. How to build models more expressive than both?

+

±2

• SUM • UDISJ

• ?
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Sum of squares (SOS) circuits
p(x) = 1

Z

∑r
i=1 c

2
i (x), ci(x) ∈ R

where parameters and input functions can be negative

+

±2Σ2

• SUM • UDISJ

• UPS • UTQ
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Σ

∃ p requiring exponentially large monotonic circuits…
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Σ

…and also exponentially large squared circuits …
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Σ

…but a sum of squares (SOS) polysize circuits
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Theorem 2.

There is a class of non-negative functions F over d variables that
can be represented by a PC in Σ2

cmpof size O(d3). However, (i) the

smallest PC in+sd computing any F ∈ F has at least size 2Ω(
√
d),

and (ii) the smallest c2 ∈ ±2
R computing F obtained by squaring a

structured-decomposable circuit c, requires |c| to be at least 2Ω(
√
d).

SOS can surpass both expressiveness limitations!
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Experiments
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Outline

1. Can monotonic circuits be more expressive than squared?
=⇒ Yes!

2. How to build models more expressive than both?
=⇒ SOS circuits!

3. How are SOS circuits related to other probabilistic models?
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p(x) ∝ κ(x)⊤Aκ(x)

withA ∈ Rd×d PSD
Positive Semi-Definite models

p(x) ∝ µ(x)||NNσ,Θ(t(x))||22
Squared Neural Families

A1 A2 A3 A4

X1 X2 X3 X4

A1 A2 A3 A4

X1 X2 X3 X4

p(x) ∝ ψ(x)ψ(x)†, ψ(x) ∈ C
Complex Born machines
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g1(x3)

g2(x3)( )
2

Σ
…can be reduced to SOS circuits!

=⇒ summing squares boosts expressiveness
=⇒ complex parameters help

Rudi and Ciliberto, “PSD Representations for Effective Probability Models”, 2021

Tsuchida, Ong, and Sejdinovic, “Squared Neural Families: A New Class of Tractable Density Models”, 2023

Glasser et al., “Expressive power of tensor-network factorizations for probabilistic modeling”, 2019
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Takeaways

1. A more precise expressiveness
characterization of squared circuits

2. SOS circuits can be more expressive
than both monotonic & squared circuits

3. Connect SOS with other models, thus
we understand why they are expressive

Paper Code

loreloc.github.io

@loreloc_

@loreloc
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