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Subtractive Mixture Models via Squaring:

Ll Mixture models o “We learn exponentially more expressive mixture models DL

pO0) = 3w p(X) subfectto w20 3w =1 = With subtractions, by squaring deep tensorized mixtures” . : : i
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Understanding the expressiveness of
other models in a unifying framework

Learning deep
subtractive
mixtures by
squaring layers
of a deep circuit

(Hao Tang)
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