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TL;
DR

“We learn exponentially more expressive mixture models
with subtractions, by squaring deep tensorized mixtures”

0 Mixture models

p(X) =

K∑
i=1

wi pi(X) subject to wi ≥ 0
K∑
i=1

wi = 1

(Hao Tang)

7 components can
only be added together!

Fewer components with subtractions

Questions? …Contributions! 1 2 3

1 How to learn subtractive mixture models?

p(X) =

K∑
i=1

wi pi(X) wi ∈ R

How to ensure p(X) is non-negative?
=⇒ Impose ad-hoc constraints over the parameters

7 challenging to derive in closed-form [1][2][3]

2 How much more expressive are they?
with respect to traditional additive-only mixtures

3 What is their relationship with other models?
understanding why they are expressive ...
... and why they support tractable inference

Learning deep
subtractive
mixtures by
squaring layers
of a deep circuit
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1 Squaring mixtures ...

p(X) ∝

 K∑
i=1

wi pi(X)

2

=

K∑
i=1

K∑
j=1

wiwj pi(X)pj(X)

Renormalization:

Z =

K∑
i=1

K∑
j=1

wiwj

∫∫∫
pi(X)pj(X)dX
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Tractable marginalization is supported by
exponential families [2] and splines components
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... by squaring circuits

W ∈ R3×3

⊙
W

Build deep mixtures with
layers as “Lego blocks”

2
Theorem. exponential separation [4] [5]
There is a class of distributions F over variables X that can be
compactly represented as a shallow squared mixture with negative
weights, but the smallest structured decomposable additive-only
mixture of any depth computing any F ∈ F has size 2Ω(|X|).

Deep additive-only mixtures
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Squared subtractive
mixture model

( W )2
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Born machines [6]
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p(x) ∝ κ(x)⊤ A κ(x)
PSD models [7] ⇒ ∑∑∑

( W )2

3 Understanding the expressiveness of
other models in a unifying framework
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